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Conversion from Data-flow to Synchronous Execution

in Loop Programs

Janice K. Cuny

Lawrence Snyder

Purdue University

The preparation of highly parallel programs is not yet a routine pro-
gramming activity. When we compare it to sequential programming
where there are numerous general problem solving techniques, extensive
programming language and system support, and a large corpus of
thoroughly analyzed and tested algorithms and data structures, parallel

programming is presently at a very primitive stage of development.

One difficulty of course, is synchronization - making sure that the
right processor processes the right data at the right time. The synchroni-
zation problem can apparently be simplified by use of a data-driven or
data-flow based execution mode. In this mode, each processor idles in a
busy-wait loop until data values have arrived from all ol ils input
sources; it then computes and writes results out to olher processors.
Parallel programming is simplified because much of the synchronization

is accomplished implicitly by the underlying machine.

The data-flow execution mode does not eliminate synchronization as
a problem of parallel computation, it only eliminates it as a problem for

the programmer. The underlying hardware must still service the arrival
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of data (asynchronously), determine when sufficient data has arrived to
initiate processing, support queues for all of the input channels to hold
the arriving data, and implement a "queue is full” signalling mechanism
with the input data queues. These hardware facilities represent
significant overhead and are incompalible with current cfforts in the

design of VLSI mulliprocessors toward very simple processor siructure.

In this paper, we consider the automatic conversion of data-flow pro-
grams into equivaleni synchronous programs. Such conversions enable
programmers to program as though the underlying machine executed in
a data-flow mode, while allowing the hardware to execute synchronously.
We begin with a model of parallel computation in which we can express
both dala-flow and synchronous computations. Within this model, we
define a resiricted class of programs and characterize the conditions
under which a conversion from data-flow to synchronous execution is pos-
sible. Finally, we present two algorithms for performing the conversion:
the first is more general but the second often produces better results.
Although our algorithms apply only to a subclass of all parallel programs,
it is sufficienlly rich to encompass many of the recently developed paral-

lel and systolic programs.

The Model of Parallel Programs

The formalism that we use to develop our algorithms and prove their
correcilness is quite spare. In order to connect il with conventional paral-
lel computation settings, we give an informal description of the situation

from which we have abstracled.

We postulate a parallel processor composed of m machines

M\ M3....Mn which communicate with read and write operations. The
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machines, referred to as processing elements or PEs, are all of the same
Lype. In gencral, PEs will be sequential RAMs wilth small amounts of local

memory (and no global memory) but it is sufficient to let them be devices

capable of defining a regular set. This simplification is valid because we

are concerned here only with a PE’s interprocess input/output behavior

and not its computational ability. We assume that the machines execute
with a common time step; on each step a PE can attempt to perform a

set of operations simultaneously. In synchronous mode, all operations will

exccule the first time Lhal Lthey are allempled. In data-flow mode, writes
will exccute as soon as they are attempted but, depending on the state,

reads may block. A blocked operation is retried on the next execution

step and a process does not proceed with a new set of operations until all

of its current operations have completed.

3 We model such systems as Interprocess Communication (IC) Sys-
tems. An IC system is completely defined by a set of regular expressions,
V1.Va.....Vm, each describing the interprocess input/output behavior of a

single PE. The i-th regular expression describes the behavior of the i-th

machine. The algorithms developed in this paper work for loop programs

in which all regular expressions are of the form a’ where a is a sequence
of symbols from the alphabet. We deflne p to be a function on expres-
sions thal removes the outermost Kleene star; p(a’) = a. The symbols in
our regular expressions denote sets of operations that are to be executed
simultaneously. The alphabel is the power sct of {r wq|ic[m]} ' where ry

denotes a rcad from Pl j, w; denoles a wrile lo PE j and {{ takes the

place of any operation not involved in inlerprocess communication

|
’ t [m] denotes the set {1,2.3,....m}.
[]
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(including operations that transfer valucs to and from the external

cnvironmcnt).T Figure 1(a) is an IC system represenling Lhe systolic

Processor 7: w”l

( | gl )*
Processor 2: (|r J LJ v, w@‘ J l‘] J )*

Processor 3: * F :] ;—] @ _rﬂl L L_4_ff__ )*
Processor 4: (?’3] [nji m j D ,,J "

1(a) IC system representing systolic processor
for band matrix - vector multiplication

1(b) Communication graph for the IC system of
Figure 1 (a)

102

Figure 1,

processor for band matrix-vector multiplication with a bandwidth of four

[1]; only interprocess reads and writes appear in the model, all other

operations are replaced by {§. Figure 1(b) shows the communication
graph for this system; cach vertex represents a PE and a directed edge
from node i to node j represents a communication link over which the

i-th PE writes to the j-th PE and the j-th PE reads from the i-th PE.

We define the execution of an IC system terms of two sequences,

C\.C®:C%. .. and 7°T'.7%.. . Each element of the first sequence is an m-

vector which gives the program counter values for all PEs (a program

counter value i1z Lhe index of a sct of operalions). Each element of Lthe

: t Note that we use standard set notlation Lo represent both sets and the symbols
“ of our alphabet; Lhe distinclion will be clear from the surrounding context. In our

figurcs, we will use rectangular boxes Lo enclose scts rather than the usual brace
notation.
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second sequence is an mxm matrix of strings, giving the status of com-
munications in terms of a generic message X. The status of communica-
lions on the link from PE i to PE j is given by #,;: {4 = X® means that
Lhere have been n unanswered writes; ¢, ; = (X~')* means that there have
been n unanswered reads; and ¢;; = A means that there are no outstand-
ing reads or writes (A represents the null string). The sequences together
describe the execution of a system; for all k>0, C* describes the set of
opcrations that will be attempted on the k-th execution step and T*
describes the status of communications if all of those operations com-

plete.

To start the sequences, we define ¢;'=1 for all ie[m] and ¢2;=A for all
i,je[m]; C! shows all PEs executing their first sel of operations and 7°
shows Lhat there are no outstanding reads or writes. The remainder of
the sequence of Cs is defined to reflect the fact that a PE moves to a new
set of operations only if all operations in its previous set have completed:

ck¥+1  if UNBLOCKED(i,V,(c¥),T*)

k1 -
C; = .
¢ ck otherwise

where the notation V(j) denoles the j-th symbol in some word generated
by the expression V T and UNBLOCKED(i,S,T) is true if the i-th PE can
execute all operations in set S when the status of communications is
deseribed by T. The cxact form ol UNBLOCKED depends on the mode of
exceution, synchronous or data-flow, and is discussed bcelow. The

remainder of the sequence of Ts is deflned to reflect the execution of

¥ Note thal for all loop programs, V(j) is a unique symbol. This notation will also
be used for processes that execule an initialization sequence before enteri
their loop. Thesc PEs are represented by regular expressions of the form fa
where a and f are sequences over the alphabet and, again, the j-th symbol is
unique.

T R - g S h
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rcad and write operations:

tf'=a-t};-b where

[ X ifweV(cF) A (k=0v ct*! # cf)

a A otherwise
and
XU itreVi(ef*) A (k=0v et £ cf)
b = A otherwise

and X-X! = \. We observe that our execution rules are more general and
more realistic than those used in many models because we do not insist
that all of the operations in a set execute simultaneously. Depending on
the definition of UNBLOCKED, it is possible, for example, to allow indepen-

dent reading and writing on different ports.

The execution of an IC system is parameterized by the predicate
UNBLOCKED. When the predicate is TRUE, the IC system is synchronous,
that is, all operations execute on cvery Limc step. A correct, synchro-
nous system should have the property that corresponding reads and
writes are simultaneous.! More precisely, if during synchronous execu-
tion, tf;=A for all i, j and k, we say that the system is strongly coordi-

nated. When the predicate UNBLOCKED(i,S.T) is
Vie[m] (r;e€S => ¢ ;€X°)

the IC system is dafe flow, that is, rcad operations execute only when
valucy are present. A correct, data-flow program should have the pro-
perty that none of the individual PEs deadlock. We say that a system is
valid if

t 1t is more common to assume that a read cxecutes immediately after its
corresponding write. We have choscen simultaneous reads and writes to be con-

sistent with VLSI technology and to simplify our discussion. All of our algorithma
can be easily modified to incerporate any fixed delay for message transmission.
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Vie[m ] Vk=0 35>k (cf#c)
when the system is executed in data-flow mode.

We remark that the model developed here differs from the well-
known vector addition system model [2] and the Petri Net model [3]. In
the VAS model, there is a specific execution mode: transition vectors are
applied only if all relevant coordinates are positive and when a transition
vector is applied, all coordinates are updated simultaneously. There is
also a specific execution mode for Petri Nels: transitions fire only if all
incident places contain a token and all token values are updated simul-
taneously. In contrast, IC systems may execute in either synchronous or
data-flow mode. In synchronous mode, operations execute as soon as
they are attempted. In data-flow mode, execution is conditional on the
appropriate values being available as in the VAS and Petri Net models.
However, even in data-flow mode, our model differs from the other two
since operations execuie whenever they are enabled and the input and

output of an instruction are not necessarily simultaneous.

Variants

We would like to converl data-flow programs into strongly coordi-
nated, synchronous programs. For such algorithms to be useful, the
resulting program must perform the same computation as the original
program. To make Lhis more precise, we define the notion of the set of
reads preceding a specific write. Writes, in data-flow mode, execute on
the first step in which they are attempted; the set of writes executed by

PE i in exccution step k, WRITES (i k), is

fwy | wyeV(ef) A (k=" v cfct™y
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Reads, in data-flow mode, may block temporarily and so a read executes
in the first step in which it was attempted and the corresponding data
was available; the set of reads that PE i execules in step k, READS (i k), is
(7 | eV(ef) A tf 2 XA (7 = X) v
((k=1veck#cE YA (tF, = tfI X'y weWRITES(j .k))))} .
This means that a read in the current operation set executes on step & if
it is no longer pending after & (tf;#X™') and one of thrce conditions is
met: it had been pending in the previous step (¢f:' = X7!); or itv'was first
attempted in step k (k=1v cf#cF!) and there were unanswered writes
available (tf; = tf;tX"'); or it was first attempted in step k£ and a

corresponding write also occured in step &k (W€ WRITES (j k) ).

The I-th write from PE i to PE j occurs on execution step & such that

k, 1 if w;eWRITES (i,p)
L :pz_‘lzl’ where z, = 0 otherwise

and the set of reads that precede that I-th write, PREADS(L,i,j), is the

k-1
multi-set \y READS(i.p) . From this, we can define the relationship that
p=1

wc wish to hold between the original data-flow system and our con-

structed, synchronous system.

In terms of our abstraction, we will say the constructed system P’
performs the same compulation as the original system £ il thiree require-
ments are met. The first requirement is thal a PE communicales with
the same set of PEs in both systems. Our second requirement is that
there is at least as much data available to a PE at the time of any write in
P’ as there was available in P. This second requirement will be true if the
set of reads that precede any write in P is a subset of the set of reads

that precede that same write in P'. Thus, we allow reads to occur "ear-
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lier" and writes "later" in the constructed system than they did in the
original system; we assume that resulting, additional data is buffered
within Lthe PE. To insure that the PEs remain finite, our third require-
ment is that the amount of this additional buffering is bounded. Putting
this together, we say the new system P’ is a veriant of the original system
Pif

(i) they have the same communication graphs

(i) for each pair of PEs i and j and for all (=0

PREADS(L.i.j)CPREADS'(L.i.5)

and
(#41) there is some b such that for each pair of PEs ¢ and j and for all

{=0

| PREADS'(L i j) — PREADS (L.i.5)| <b .

We present the following propositions without proof

Proposition 1: The relation "variant of” is transitive.

Proposilion 2: If P = V|, V,,....V, is a valid, loop program and n;ns,...ny,
arc integers greater than 0, then

Vit Ve 8, Vg™

1S a variant of P.

The problem that we consider in the remainder of this paper can now
be formally staled:
Given a valid, data-flow loop program, construct a strongly coordi-

nated variant.

..n»-nn‘
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The Coordination Problem

The coordination problem cannot be solved for all data-flow, loop pro-

grams. Consider, for example, the system in Figure 2. We define the

Processor A: ( 11] ["’le {_} Ll'éi Lwﬂ ‘:} >
processor 51 (74 ][ | ["a] [%a][ ] [a ]

Figure 2. An IC system that has no balanced variant

rate at which a PE uses a communication link to be the number of reads
or writes by that PE to the link in one cycle of its execution. The PEs in
the example communicate across the link from B to A at the same rate
but they communicate across the link from 4 to B at different rates.
Intuitively, to strongly coordinate this system, the cycles of 4 must
"speed up” relative to the cycles of B. Any speed up of 4, however,
causes the communication rates across the link from A to B to differ.
This new mismatch can only be corrected by speeding up the cycles of 7
rclative to the cycles of A, returning us Lo the original problem. There is
no strongly coordinated variant of the system in Figure 2. The problem
with Lhe system is not simply a matier ol unmatched data rates: the data
rales across the link of the system in Figure 3(a) are also unmatched but
the system has a strongly coordinated variant shown in Figure 3(b). The
distinclion between systems Lhat can be coordinated and systems that

cannot be coordinated is more subtle.

Defining ON(i.j) to be the number of writes by PE i to PE 5 in ¥, and

OFF(i,1) Lo be the number of rcads by PE j from PE i in ¥;, we say that a
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Process 1: (IWZJ Wy [)*

Process 2: (D ry D)

3(a) An unbalanced system

)*

Yol P2
Process 2: (:] EDD ry D)*

3(b) A balanced variant of the system
in Figure 3(a)

Process 1: (

Figure 3.

system is balanced if the following set of balancing equations has a solu-

tion in which all z;=1
{ON(i.j)zy = OFF (i j)yzlije[m]} .

Neither the system in Figure 2 nor the system in Figure 3(a) are bal-

anced; the system in Figure 3(b) is balanced.

Lemma !: There is at most one independent, non-trivial solution to a set

of balancing equations.

Proof: Form a spanning tree T of the undirected graph underlying the
communication graph for the given system. Each vertex of T
corresponds lo a variable in the balancing equations and each edge of T
corresponds Lo onc of the equations. It is sufficient to show that each of
the (m -1) corresponding equalions arc independent. Consider a variable
z, corresponding to a leaf node of 7. There is exactly one edge e to the
node corresponding to z;, and so there is onc cquation represented by T
that uses z;. Thal equation must be independent of the other (m -2) equa-
tions rcpresented by 7T-fe} and by induction those equations must be

indcpendent of each other. //
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A loop program is said to be balancable if its balancing equations have a
solulion in which all of the z; are integers greater than 0. The system in
Figure 2 is not balancable because there is no nontrivial solution to the
sel of equatlions

224 =3xp

Tp =z, .
The system in Figure 3(a) is balancable because z, = 1 and z, = 2 is a solu-
tion to the equations. if a loop program V,,V,,....V, is balancable then a
solution to the balancing equations z,,z3,....zm can be found in O(n3) time
and by Proposition 2, we can construct a balanced variant, V," Vo', ..., Vg’
by setting each V' = (p(¥;)™)".

We can now state the relationship between loop programs which can

be sirongly coordinaled and balancable programs.

Theorem 1: A valid, loop data-flow program can be strongly coordinated if
and only il it is balancable.

Proof:

(<=) This proof is given later as the proof of our Wave Algorithm.

(=>) Let P be a valid data-flow program and let P' be a strongly coordi-
nated variant of P. Because P' conlains only loop programs, it is possible
to consider the ¢ values for any PL i as inlegers modulo the length of ¥;.
With this change in program counter values, P’ is finite state since there
is no buffering of transmitted values. Therefore there is some state, g,
which appears infinitely often in the exccution of P' and the exccution
sequences appearing between any two consccutive occurences of ¢ must
be the same. Consider an arbitrary PE i, and let 0 be the multi-set of

opcrations il exccules in a single cycle and let £ be the multi-set of

operalions it executes as the system moves from one occurence of g to
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the next. Let @™ be n-fold union of 0.

Claim: E = 0" {or some n21,
Proof: Suppose not. Then let Y= F — 0" where r is the greatest
integer such that O"cFE. Y is the set of “extra” operations that do not
form a complete cycle. Suppose there is somc write opcration, wj, in
Y. Then Y must contain all of the read «perations in O as well, since
otherwisc the wriles to PE j would "move up" relative to the reads by

PE i and eventually, for some &, we would have
PREADS (k.i.j )CPREADS (k i .5) .

Supposc therc is a read, r;, in Y. Then Y must also contain all of the
write operations in O as well, since otherwise the reads would "move
up" relative to the writes by PE i and, for any bound & there would be

some k for which
(PREADS' (k.j i) — PREADS (k.j i) > b.

Unless Y is emply, we have a contradiction. This completes the proof
of the claim.
So for cach PE, F = 0" for somc integer n. Choosing z; to be the
appropriate value of n for PE i, the z;'s form the desired solution to the

balancing equations. //

The class of programs that can be strongly coordinated is quite large

and it includes for example most of the systolic and pipelined algorithms.

As anolher characterization, an IC syslem has Lhe finile buffer property

if, when exceuted in data-flow mode, there is some inleger b such that for
alli, j €[m] and k20, tf;<b . This is obviously a desirable characteristic

for any data-flow program and we show
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Theorem 2: Any valid, loop program with the finite buffer property can be
strongly coordinated.

Proof: If D is a valid, loop program with the finile buffer property, then,
as above, there must be some state which repeats infinitely often in the
cxecution sequences for D. Between every two consecutive occurences of
Lhis stale in a sequence, a PE must cxecute and integral number (greater
than O because the sysiem is valid) of ils cycles and data rates onto and
off of cach communicalion link must be cqual. As a result, if we set z; to
the number of cycles PE i cxecutes during this sequence, then the z's

form a solution to the balancing equations in which all z,>0. //

IFrom this theorem and the example in Figure 3(a), we can conclude

Corollary: The scl of valid, loop programs with the finile buffer property
is properly contained in the set of valid, loop programs that can be
strongly coordinated.

In the next section of this paper, we present our algorithms for con-
verling dala-flow programs into a strongly coordinated programs. The
algorithms work only for balancable, valid loop programs. Wec have shown
how Lo delermine whether or not a program is balancable, now we show

how Lo determine whelher or not it is valid.
Theorem 3: If a loop program is balancable, then there is an efficient

method for testing its validity.

Proofl: Let S be a balancable loop program and let B be its balanced vari-
ant construcled as above. The words generated by each PE have not been
changed in A, so S is valid if and only if 2 is valid. If B = ¥, V,,...,V,, con-

struet the system D = p(V)[ o(Va)3°, . . p(Va H}° .

Claim.: ? is valid if and only if D is valid.




Proof:

(=>) Immediate since B is balanced.

(<=) Suppose that D is valid and B is not valid. Then there must be
some subset of the PEs, p,.pa.. ©n, which become circularly blocked;

Lthat is, for allie[n], PE i blocks on a read {from its successor, that is,

{ PE (i mod n)+1. Consider the first point in the execution sequence at
which this circular blocking occurs. Since £ is balanced, the PEs

musl all be on the same iteration of their cycles at this point and

within this iteration, the number of writes to PE i by its successor
must be one less than the number of reads by PE i from its succes-
sor. For the circular blocking to arise in B, it must be that for all
i€{n], the read which blocks in PE 7 mustl come before the write that
i releases its predecessor. But as a single PE execules in B or D, its
reads retain the same position relative to its writes so this must be
true in D as well. If the blocked reads all precede the releasing
writes in D, however, then D would block on the same operations.
This is a contradiction since D is valid, completing the proof of the
claim.
D can be tested for validity by executing it until it reaches a slep k for
which for all i, c¢f > |p(¥,)| v Vi>k(cf=cf) . Once such a stable state has

been reached, the validity of D can be tested by determining whether or

not all read and write operations have completed. If s is the number of
operations executed by PEs in a single cycle of S, D will execute for at

mosl s steps and so the test requires O(s) time. //

The Conversion Algorithms

In this seclion, we provide algorithms for aulomatically converting a

data-flow loop program into a strongly coordinated variant when possible.
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For an arbitrary program P, wec start by constructing a balanced variant
and testing it for validity. If P is balancable and valid, then its balanced
variant is coordinated with one of the two algorithms presented in this
section. Proposition 1 insures thal the resulting, strongly coordinated

system is a variant of P.

Starting with a balanced, valid variant, we construct a strongly coor-

dinated variant with the following algorithm.

Algorithm 1: Wave algorithm to coordinate loop data-flow programs
Input. A valid, balanced, loop program, V;.Vs.....Vm

Oulput: A strongly coordinated variant of the given program, V,' . Vy'..... V'
Method.:

1. Form expressions R,.K.. R, from the given expressions where

Ry = p(V)(D".

o

Compute the data-flow execution sequences C!,C%...,C* and

Y i T* where k is the least integer for which cf > |p(¥;)| for all

3. For each i and for t=1.2,...k, set Ve'(t) to
READS (i,1)ulw, |r,€ READS (§ 1)}.

Theorem 4: The Wave Algorithm constructs a strongly coordinated variant
of any valid, balanced, loop program.

Proof: Since the original system is valid, we are assured of finding a value
for k& in step 2. By the construction in step 3, writes can only occur in the
same step as their corresponding rcads so the system is strongly coordi-

nated (the complete justification of this appears in a paper on testing
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coordination properties [4]). It remains to show that the constructed
system is a varianl of the original system. Since Lhe set of reads executed
in any cycle of a PE is the same in both the given and constructed sys-
tems, requirements (i) and (#i) for a variant are trivially satisfied and,
for requirement (ii), it is sufficient to consider just the first & execution
steps  of the system. For 1=12,..k, it is obvious that
KEADS (7,1) = READS'(i.t) for all i where READS is defined for the execution
sequences of the given system and READS' is defined for the exccution
scequences of the constructed system. Suppose the second requirement
is violaled by the (-th write from PE i to PI j which occurs on the r-th
step of Lhe executlion sequence for Lhe constructed system and the s-th
step of the execution sequence for the given system where r<s. The write
in the constructed system occurs in the same step as its corresponding
rcad in both systems. Therefore in the original system the read that
corresponds to the write in step s must occur in step r (before s), which

is nol possible by the definilion of data-flow exccution. //

If s is the total number of operations executed by PEs in a single cycle of
V' Vo' V', then k=s and for all i, |p(¥;')|=s. The algorithm builds each
symbol of each V' and so il requires O(ms) time.

I'igure 4 is an cxample of a valid, dala-flow systemn and its strongly
coordinaled variant constructed by this algorilhm. The name of the algo-
rithm comes from the fact thal a single cycle’s data passes through the
enlire system before any PE starts its next cycle. For this example, the
result is nearly optimal because the data dependencies of the program do
not allow any of the PEs to get more than a few operations ahead of the
remaining Plis. However, if the original system is changed even slightly,

as in I'igure 9, the resull is unsatisfactory. In this case, a better solution

s
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Processor 4:

is to allow Processors 4 and D to start a full cycle ahead of the others.
After they have completed their first cycles, Processor B can begin exe-

cuting its first cycle, while Processors 4 and D continued with their

second cycles. By the third cycle of A and D, all processors are executing

on every step. This more efficient solution, pictured in Figure 6, main-
tains the original three step cycle for the processors. The writes hav~
been moved “forward" so that, Ior example, the write which occurs at the
beginning of the second cycle for Processor A is delayed from its first
cycle. The wy in the third cycle of Processor D is delayed from its second

cycle and the w¢ in the third cycle of Processor D is delayed from its first

i cycle. The solution was constructed by the following coordination algo-

rithm for systems with acyclic communication graphs.




Processor 4: ([:] Yp

Processor B: (|r, Tp [_] wol)*

S *
Processor C: ([rg r), [] )

Processor D: (|VYg ¥, )*

Data flow program

(2) 0

Communication graph

Processor A: ([:] Wp [:

)*

Processor B: ( [Tp

]

)*

4
Processor C: (|7p [] []
Processor D: ([wpg wcl [] [:

)*

]
0
(]
-

Strongly coordinated variant from Wave Algorithm

Figure 5.
Cycle 1 Cycle 2 Cycle 3

Processor A4: D D D ) D E ([¥g ] l: )*
Processor B: P4 Tp [:][: (s v¢ | ] [: )*
. r. r |[] *

Processor (: ({8 'p || E )
] "

Processor D: ,:I H D I"’B’ [—I E ({8 “c || | E )

Strongly coordinated variant of IC system

from Figure 5.
Figure 6.
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Algorithm 2: Buffered Write Algorithm

Input: A valid, balanced, loop program, V,.V,. .. ..V, with an acyclic com-

munication graph.
Output. A strongly coordinated variant of the given system, v, Vy'.....Vn'.

Method.

1. Label the nodes of the communication graph with the length of the
longest path from a source node (a node with no predecessors) to the

node, Let LMAX be the depth of the graph.

2. Lel n be the maximum length of any p(V¥;) and form the expressions

R, Ry ..., Ry where for all i
PR -
Ry = (™ (E-(fyn e yuaxs

where U is the label of the node for PEi and the expression £ is p(¥)
with all of the write operations removed (if writes are the only opera-

tions on some step, replace them with {}).

3. For eachie€[m], for each k=1 to {p(&)], set V;'(k) to

Ri(k)u { wy | reR;(k)]

Theorem %: The Buffered Write Algorithm constructs a strongly coordi-
nated variant for any valid, balanced, loop program that has an acyclic
communication graph.

Proof: The fact that the resulting program is strongly coordinated follows
the construction in step 3 as above, so it remains to show that it is a vari-
ant of the given system. Conditions (i) and (iii) for variance are obvi-
ously mel, leaving condition (ii). The execution sequence for the output
system can be divided into periods cqual in length to the cycle size. Con-

sider a single PE which both rcads and writes (if a PE does not both read

and write, it trivially satisfies the second condition). After the initial
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periods in which the PE just idles, it executes all of the reads from one
cycle during each period. Therefore, it is sufficient to show that if the
reads from a given iteration of the PE occur during period k, then the
writes for Lhal ileration occur no sooner than period k+1. Becausc the
communication graph is acyclic, this is easily done by induction on the
periods noting that (1) the writes executed during any period are a sub-
sel of the writes for a cycle and (2) the first read occurs at least one

period before the first write. //

The R; will have a common length n equal to LMAX times . In order to set
the value of each symbol in each one of the Vs, all of the symbols in the
corresponding position of the R;s must be examined and so the algorithm
runs in O(m?n) time.

This algorithm works for all acyclic loop programs but it does not
always produce a good solution. Consider the system in Figure 7. The
Buffered Write construction creates a long initialization sequence (the
maximum length is the maximum cycle size times the number of PEs)
which mcans that many of the PEs idlc for long times and that the length
of the PE code incrcases. The cxlra idling is probably not significani
since we can assume in most cases that the number of PEs will be much
smaller than the number of iterations required. The longer code, how-
ever, is a more serious problem since PEs will normally have a very lim-
iled amount of memory. For this example, a better solution is the coordi-
nated program in Figure 8 in which each of the writes has simply been
moved "forward" Lwo steps. Becausc the movement was within one cycle,
the PTis do not have to stagger their starts. The Buffered Write Algorithm

can be modified to produce this code by "preprocessing" the communica-

tion graph to eliminate links for which all writes appear before their

e
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corresponding reads.

As a final comment, notice that the compute operations have been

completely ignored in our analysis. To be realistic, we would have to

arguc that our notion of variant preserves the computations of the sys-

tem. In fact, our definition does not preserve the computations of the

system since it does not preserve the order of compute steps or the

e e e arm —r i AT
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Figure 8. Strongly coordinated variant of the
| system in Figure 7.

i information available tc a PE on a compute step. The definition of variant
would have to be strengthened. It should be noted, however, that our
algorithms could be easily adapted to this stronger definition since they

relain the position of all compute steps.

Conclusions

| We have presented a simple model of parallel computation in which
both data-flow and synchronous execution modes can be harmoniously
expressed. Given certain programs defined using the data-flow execution

mode, we have shown 10w to synthesize programs that are computation-

ally equivalent when executed in the synchronous mode. For the class of
programs under consideration, we charactcrized those for which this syn-
thesis is possible using the 2oncepl of "balancable”. Potentially, our algo-
rithms can be used to shift the burden of specifying detailed timing

behaviors from the programmer to a compiler.
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